Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 69(8): 1027-1036, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38423875

RESUMO

Electron-phonon interactions and electron-electron correlations represent two crucial facets of condensed matter physics. For instance, in a half-filled spin-1/2 anti-ferromagnetic chain, the lattice dimerization induced by electron-nucleus interaction can be intensified by onsite Coulomb repulsion, resulting in a spin-Peierls state. Through first-principles calculations and crystal structure prediction methods, we have identified that under mild pressures, potassium and ammonia can form stable compounds: R3¯m K(NH3)2, Pm3¯m K(NH3)2, and Cm K2(NH3)3. Our predictions suggest that the R3¯m K(NH3)2 exhibits electride characteristics, marked by the formation of interstitial anionic electrons (IAEs) in the interlayer space. These IAEs are arranged in quasi-two-dimensional triangular arrays. With increasing pressure, the electronic van-Hove singularity shifts toward the Fermi level, resulting in an augmented density of states and the onset of both Peierls and magnetic instabilities. Analyzing these instabilities, we determine that the ground state of the R3¯m K(NH3)2 is the dimerized P21/m phase with zigzag-type anti-ferromagnetic IAEs. This state can be described by the triangular-lattice antiferromagnetic Heisenberg model with modulated magnetic interactions. Furthermore, we unveil the coexistence and positive interplay between magnetic and Peierls instability, constituting a scenario of spin-Peierls instability unprecedented in realistic 2D materials, particularly involving IAEs. This work provides valuable insights into the coupling of IAEs with the adjacent lattice and their spin correlations in quantum materials.

2.
Phys Rev Lett ; 131(14): 146101, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37862650

RESUMO

Carbon is one of the most important elements for both industrial applications and fundamental research, including life, physics, chemistry, materials, and even planetary science. Although theoretical predictions on the transition from diamond to the BC8 (Ia3[over ¯]) carbon were made more than thirty years ago, after tremendous experimental efforts, direct evidence for the existence of BC8 carbon is still lacking. In this study, a machine learning potential was developed for high-pressure carbon fitted from first-principles calculations, which exhibited great capabilities in modeling the melting and Hugoniot line. Using the molecular dynamics based on this machine learning potential, we designed a thermodynamic pathway that is achievable for the double shock compression experiment to obtain the elusive BC8 carbon. Diamond was compressed up to 584 GPa after the first shock at 20.5 km/s. Subsequently, in the second shock compression at 24.8 or 25.0 km/s, diamond was compressed to a supercooled liquid and then solidified to BC8 in around 1 ns. Furthermore, the critical nucleus size and nucleation rate of BC8 were calculated, which are crucial for nano-second x-ray diffraction measurements to observe BC8 carbon during shock compressions. The key to obtaining BC8 carbon lies in the formation of liquid at a sufficient supercooling. Our work provides a feasible pathway by which the long-sought BC8 phase of carbon can be reached in experiments.

3.
Natl Sci Rev ; 10(7): nwad128, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37332628

RESUMO

Crystal structure predictions based on first-principles calculations have gained great success in materials science and solid state physics. However, the remaining challenges still limit their applications in systems with a large number of atoms, especially the complexity of conformational space and the cost of local optimizations for big systems. Here, we introduce a crystal structure prediction method, MAGUS, based on the evolutionary algorithm, which addresses the above challenges with machine learning and graph theory. Techniques used in the program are summarized in detail and benchmark tests are provided. With intensive tests, we demonstrate that on-the-fly machine-learning potentials can be used to significantly reduce the number of expensive first-principles calculations, and the crystal decomposition based on graph theory can efficiently decrease the required configurations in order to find the target structures. We also summarized the representative applications of this method on several research topics, including unexpected compounds in the interior of planets and their exotic states at high pressure and high temperature (superionic, plastic, partially diffusive state, etc.); new functional materials (superhard, high-energy-density, superconducting, photoelectric materials), etc. These successful applications demonstrated that MAGUS code can help to accelerate the discovery of interesting materials and phenomena, as well as the significant value of crystal structure predictions in general.

4.
Bioresour Technol ; 379: 129003, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37019412

RESUMO

An integrated process of electrochemical pre-treatment with carrier-based membrane bioreactor (MBR) was constructed for fresh leachate from waste transfer stations with high organic and NH4+-N content. Results showed that within a hydraulic retention time 40 h, the removal efficiencies of chemical oxygen demand (COD), NH4+-N, suspended solids (SS) and total phosphorus (TP) were over 98.5%, 91.2%, 98.3% and 98.4%, respectively, with the organic removal rate of 18.7 kg/m3. The effluent met the Grade A Standard of China (GB/T31962-2015). Pre-treatment contributed about 70 % of the degraded refractory organics and almost all the SS, with the transformation of the humic-like acid to readily biodegradable organics. Biotreatment further removed over 50% of nitrogen pollutants through simultaneous nitrification and denitrification (SND) and consumed about 30% of organics. Meanwhile, the addition of carriers in the oxic MBR enhanced the attached biomass and denitrification enzyme activity, alleviating membrane fouling.


Assuntos
Reatores Biológicos , Nitrificação , Nitrogênio/química , Fósforo , Análise da Demanda Biológica de Oxigênio
5.
Nat Commun ; 14(1): 1165, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859401

RESUMO

Magnesium Oxide (MgO) and water (H2O) are abundant in the interior of planets. Their properties, and in particular their interaction, significantly affect the planet interior structure and thermal evolution. Here, using crystal structure predictions and ab initio molecular dynamics simulations, we find that MgO and H2O can react again at ultrahigh pressure, although Mg(OH)2 decomposes at low pressure. The reemergent MgO-H2O compounds are: Mg2O3H2 above 400 GPa, MgO3H4 above 600 GPa, and MgO4H6 in the pressure range of 270-600 GPa. Importantly, MgO4H6 contains 57.3 wt % of water, which is a much higher water content than any reported hydrous mineral. Our results suggest that a substantial amount of water can be stored in MgO rock in the deep interiors of Earth to Neptune mass planets. Based on molecular dynamics simulations we show that these three compounds exhibit superionic behavior at the pressure-temperature conditions as in the interiors of Uranus and Neptune. Moreover, the water-rich compound MgO4H6 could be stable inside the early Earth and therefore may serve as a possible early Earth water reservoir. Our findings, in the poorly explored megabar pressure regime, provide constraints for interior and evolution models of wet planets in our solar system and beyond.

6.
J Environ Manage ; 329: 117088, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584508

RESUMO

The municipal solid waste (MSW) with high water content can be pre-treated by the mechanical dewatering technology to significantly decrease the leachate generation in sequential landfill treatment or to improve the efficiency for solid waste incineration, which has attracted great concerns recently. However, the generated mechanical dewatering wastewater (MDW) containing high organics and nitrogenous content has been one of the big challenges for the sustainable treatment of MSW. In this study, a pilot-scale integrated system composed of physiochemical pretreatment, anaerobic sequencing batch reactor (ASBR), partial nitrification SBR (PN-SBR), denitrification SBR (DN-SBR), and UV/O3 advanced oxidation process, with a capacity of 1.0 m3/d to treat MDW containing over 34000 mg-chemical oxygen demand (COD)/L organics pollutant and 850 mg/L NH4+-N, was successfully developed. By explorations on the start-up of this integrated system and the process conditions optimization, after a long-term system operation, the findings demonstrated that this integrated system could reach the removal efficiency in the COD, NH4+-N and total nitrogen (TN) in the MDW of 99.7%, 98.2% and 96.9%, respectively. Partial nitrification and denitrification were successfully obtained for the TN removal with the nitrite accumulation rate of over 80%. The treatment condition parameters were optimized to be 800 mg/L polyaluminum chloride (PAC) and 2 mg/L polyacrylamide (PAM) under a pH of 9 for pretreatment, 36 h hydraulic retention time (HRT) for ASBR, 24 h for PN-SBR, and 2 h for UV/O3 unit. The organic sources in the MDW were also found to be feasible for the DN-SBR. Consequently, the resulting final effluent was stably in compliance with the discharge standard with high stability and reliability.


Assuntos
Nitrificação , Poluentes Químicos da Água , Águas Residuárias , Desnitrificação , Reprodutibilidade dos Testes , Resíduos Sólidos , Esgotos/química , Reatores Biológicos , Poluentes Químicos da Água/química , Nitrogênio/química , Oxirredução
7.
Phys Rev Lett ; 129(24): 246403, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563263

RESUMO

Superconducting and superionic behaviors have physically intriguing dynamic properties of electrons and ions, respectively, both of which are conceptually important and have great potential for practical applications. Whether these two phenomena can appear in the same system is an interesting and important question. Here, using crystal structure predictions and first-principle calculations combined with machine learning, we identify several stable Li-Al compounds with electride behavior under high pressure, and we find that the electronic density of states of some of the compounds has characteristics of the two-dimensional electron gas. Among them, we estimate that Li_{6}Al at 150 GPa has a superconducting transition temperature of around 29 K and enters a superionic state at a high temperature and wide pressure range. The diffusion in Li_{6}Al is found to be affected by an electride and attributed to the atomic collective motion. Our results indicate that alkali metal alloys can be effective platforms to study the abundant physical properties and their manipulation with pressure and temperature.

8.
Research (Wash D C) ; 2022: 9798758, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111317

RESUMO

Aluminum, as the most abundant metallic elemental content in the Earth's crust, usually exists in the form of alumina (Al2O3). However, the oxidation state of aluminum and the crystal structures of aluminum oxides in the pressure range of planetary interiors are not well established. Here, we predicted two aluminum suboxides (Al2O, AlO) and two superoxides (Al4O7, AlO3) with uncommon stoichiometries at high pressures using first-principle calculations and crystal structure prediction methods. We find that the P4/nmm Al2O becomes stable above ~765 GPa and may survive in the deep mantles or cores of giant planets such as Neptune. Interestingly, the Al2O and AlO are metallic and have electride features, in which some electrons are localized in the interstitials between atoms. We find that Al2O has an electrical conductivity one order of magnitude higher than that of iron under the same pressure-temperature conditions, which may influence the total conductivity of giant planets. Our findings enrich the high-pressure phase diagram of aluminum oxides and improve our understanding of the interior structure of giant planets.

9.
Sci Total Environ ; 845: 157242, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35820525

RESUMO

Metal cations are present in domestic and industrial wastewater and have adverse effects on human and aqueous life. The present study describes the development of the molecular probe 9-anthracen-9-ylmethylene)hydrazineylidene)methyl)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol (AMHMPQ) to detect Cr3+, Cu2+, Fe3+, and Gd3+ ions by using UV-visible, fluorescence, colorimetric and excitation-emission matrix (EEM) spectroscopy techniques. The interaction of Cr3+, Cu2+, Fe3+, and Gd3+ can be observed by the absorption maxima shift, turn-off, colour changes, and EEM shifts. In addition, fluorescence limits of detection 17.66 × 10-6 M, 6.44 × 10-9 M, 28.87 × 10-8 M, and 12.49 × 10-6 M in wide linear ranges, low limits of quantifications, high values of Stern-Volmer constant, Job's plot and Benesi-Hildebrand plot justify the 1:1 association affinity with association constants of 1.46 × 104 M-1, 1.86 × 107 M-1, 2.69 × 105 M-1, 2.13 × 104 M-1 for AMHMPQ-metal ions (Cr3+, Cu2+, Fe3+, and Gd3+ ions), respectively. Paper- and mask-based kits are developed to explore the utility of the designed chemosensor. Additionally, AMHMPQ acts as a reusable sensor for two, seven, two, and zero cycles for Cr3+, Cu2+, Fe3+, and Gd3+ ions, respectively, when checked with EDTA.


Assuntos
Colorimetria , Cobre , Cátions , Colorimetria/métodos , Corantes Fluorescentes , Humanos , Metais , Espectrometria de Fluorescência/métodos
10.
Phys Rev Lett ; 128(3): 035702, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35119900

RESUMO

Silica, water, and hydrogen are known to be the major components of celestial bodies, and have significant influence on the formation and evolution of giant planets, such as Uranus and Neptune. Thus, it is of fundamental importance to investigate their states and possible reactions under the planetary conditions. Here, using advanced crystal structure searches and first-principles calculations in the Si-O-H system, we find that a silica-water compound (SiO_{2})_{2}(H_{2}O) and a silica-hydrogen compound SiO_{2}H_{2} can exist under high pressures above 450 and 650 GPa, respectively. Further simulations reveal that, at high pressure and high temperature conditions corresponding to the interiors of Uranus and Neptune, these compounds exhibit superionic behavior, in which protons diffuse freely like liquid while the silicon and oxygen framework is fixed as solid. Therefore, these superionic silica-water and silica-hydrogen compounds could be regarded as important components of the deep mantle or core of giants, which also provides an alternative origin for their anomalous magnetic fields. These unexpected physical and chemical properties of the most common natural materials at high pressure offer key clues to understand some abstruse issues including demixing and erosion of the core in giant planets, and shed light on building reliable models for solar giants and exoplanets.

11.
Chemosphere ; 290: 133231, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34902386

RESUMO

In this study, bioleaching is employed for removing heavy metals from excess sludge generated during municipal wastewater treatment. To avoid organic matter impact on bioleaching, aerobic digestion was performed as pretreatment of the bioleaching or accompanied with the bioleaching. The results showed that the leaching amounts of heavy metals from the process of aerobic digestion accompanied with bioleaching was 2.3 times more than that of the process of aerobic digestion followed by bioleaching. The stable-state proportions of Zn, Cu, Ni and Mn increased by 83%, 94%, 96% and 91%, respectively, in the process of aerobic digestion accompanied with bioleaching, and moreover, the reduction rate of MLSS increased by 22.7%. Although the content of ammonia nitrogen and total phosphorus in sludge decreased after bioleaching treatment, they were still much higher than the soil background value. It indicates that the treated sludge still has agricultural value. High throughput sequencing analysis showed that the relative abundance of acid-producing bacteria (Romboutsia, Clostridium, Tricibacter, and Intestinibacter) significantly increased from 0% to 28.6%, 6.9%, 3.9%, and 2.4%. The enrichment of these acidogenic bacteria was the main reason for the pH decrease, which was conducive to the removal of heavy metals from sludge.


Assuntos
Metais Pesados , Purificação da Água , Digestão , Metais Pesados/análise , Esgotos , Solo
12.
Environ Res ; 204(Pt D): 112374, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34800537

RESUMO

Seawater desalination is one of the most applied approaches for freshwater replenishment. However, the process not only generates freshwater but also consumes it. It is important to evaluate the balance of the production and consumption of freshwater in desalination, which is also called as water footprint. It will reveal the feasibility of seawater desalination in terms of water production, but related study has not been reported. In this study, the water footprint of reverse osmosis desalination process has been investigated based on a real reverse osmosis desalination plant data. According to the calculation, the freshwater utilization of the reverse osmosis desalination plant was about 8.16 × 10-3 m3 with 1 m3 freshwater production. The study reveals that RO desalination is freshwater gain process as the utilized freshwater amount was less than the one produced. The sensitivity study showed that the energy source used in the process was the most significant parameter affecting on the water footprint. The freshwater required in the reverse osmosis desalination with energy supplied by thermal and solar was 8.01 × 10-3 m3 and 9.90 × 10-3 m3 in 1 m3 freshwater generation, respectively. It suggests that energy source selection is important in RO desalination system.


Assuntos
Purificação da Água , Filtração , Osmose , Água do Mar , Água
13.
Adv Mater ; 34(6): e2107799, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34818689

RESUMO

The superconducting proximity effect (SPE) induces a superconductivity transition in otherwise non-superconducting thin films in proximity with a superconductor. The SPE usually occurs in real space and decays exponentially with film thickness. Herein, an abnormal SPE in a topological insulator (TI)/superconductor heterostructure is unveiled, which is attributed to the topologically protected surface state. Surprisingly, such abnormal SPE occurs in momentum space regardless of the TI film thickness, as long as the topological surface states are robust and form a continuous conduction loop. Combining transport measurements and scanning tunneling microscopy/spectroscopy techniques, the SPE in Bi2 Se3 /FeSe0.5 Te0.5 heterostructures is explored, where Bi2 Se3 is an ideal 3D topological insulator and FeSe0.5 Te0.5 a typical iron-based superconductor. As the thickness of the Bi2 Se3 thin film exceeds 400 nm, there still exists SPE-induced superconductivity on the surface of Bi2 Se3 thin film with a transition temperature Tc not less than 10 K. Such an extraordinary behavior is induced by the unique properties of topologically protected surface states of Bi2 Se3 . This research deepens the understanding of the important role of topologically protected surface states in the SPE.

14.
Phys Rev Lett ; 126(3): 035701, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33543966

RESUMO

Silica (SiO_{2}), as a raw material of silicon, glass, ceramics, abrasive, and refractory substances, etc., is of significant importance in industrial applications and fundamental research such as electronics and planetary science. Here, using a crystal structure searching method and first-principles calculations, we predicted that a ground state crystalline phase of silica with R3[over ¯] symmetry is stable at around 645-890 GPa, which contains six-, eight-, and nine-coordinated silicon atoms and results in an average coordination number of eight. This mixed-coordination silica fills in the density, electronic band gap, and coordination number gaps between the previously known sixfold pyrite-type and ninefold Fe_{2}P-type phases, and may appear in the core or mantle of super-Earth exoplanets, or even the solar giant planets such as the Neptune. In addition, we also found that some silicon superoxides, Cmcm SiO_{3} and Ccce SiO_{6}, are stable in this pressure range and may appear in an oxygen-rich environment. Our finding enriches the high-pressure phase diagram of silicon oxides and improves understanding of the interior structure of giant planets in our solar system.

15.
Natl Sci Rev ; 7(10): 1540-1547, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34691486

RESUMO

Helium and methane are major components of giant icy planets and are abundant in the universe. However, helium is the most inert element in the periodic table and methane is one of the most hydrophobic molecules, thus whether they can react with each other is of fundamental importance. Here, our crystal structure searches and first-principles calculations predict that a He3CH4 compound is stable over a wide range of pressures from 55 to 155 GPa and a HeCH4 compound becomes stable around 105 GPa. As nice examples of pure van der Waals crystals, the insertion of helium atoms changes the original packing of pure methane molecules and also largely hinders the polymerization of methane at higher pressures. After analyzing the diffusive properties during the melting of He3CH4 at high pressure and high temperature, in addition to a plastic methane phase, we have discovered an unusual phase which exhibits coexistence of diffusive helium and plastic methane. In addition, the range of the diffusive behavior within the helium-methane phase diagram is found to be much narrower compared to that of previously predicted helium-water compounds. This may be due to the weaker van der Waals interactions between methane molecules compared to those in helium-water compounds, and that the helium-methane compound melts more easily.

16.
J Environ Manage ; 255: 109849, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760298

RESUMO

Phosphate removal through in-situ Fe2+ oxidation induced homogenous phosphate precipitation has shown its advantages in municipal wastewater treatment. Its feasibility and suitability for phosphate removal in industrial wastewater with wide-range pH variation like electro-plating wastewater were investigated in bench scale experiments using synthetic wastewater and continuous experiment using real wastewater. Bench scale experiments showed that different Fe2+ oxidation approaches worked well for phosphate removal at varied pH conditions. Sole dosing Fe2+ salt with aeration achieved sound phosphate removal at alkaline condition (pH ≥ 8). At neutral pH (6 < pH < 8), transition metallic ions catalytic oxidation is a suitable alternative. Cu2+ exhibited superior catalytic Fe2+ oxidization over Mn2+, Zn2+, and Ni2+. At acid pH (3.0 < pH ≤ 6.0), Fenton reaction oxidation (H2O2 = 5 mg/L) showed its efficiency. At their corresponding optimal pH conditions and with Fe2+/P ratio of 1.8, dosing sole Fe2+ salt, Cu2+ catalyzed Fe2+ oxidation, and Fe2+/H2O2 treatments can achieve the TP discharge limit of 0.5 mg/L. In a 30-day continuous experiment using real electro-plating wastewater (pH 4.9-5.5), in both direct Fe2+/H2O2 treatment and Cu2+ catalyzed Fe2+ oxidation treatment after wastewater pH being adjusted to 7 effluent TP met China's discharge requirement 0.5 mg/L.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , China , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Ferro , Oxirredução , Fosfatos , Eliminação de Resíduos Líquidos
17.
Phys Rev Lett ; 122(20): 206401, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31172761

RESUMO

Topological states of quantum matter have attracted great attention in condensed matter physics and materials science. The study of time-reversal-invariant topological states in quantum materials has made tremendous progress. However, the study of magnetic topological states falls much behind due to the complex magnetic structures. Here, we predict the tetradymite-type compound MnBi_{2}Te_{4} and its related materials host topologically nontrivial magnetic states. The magnetic ground state of MnBi_{2}Te_{4} is an antiferromagetic topological insulator state with a large topologically nontrivial energy gap (∼0.2 eV). It presents the axion state, which has gapped bulk and surface states, and the quantized topological magnetoelectric effect. The ferromagnetic phase of MnBi_{2}Te_{4} might lead to a minimal ideal Weyl semimetal.

18.
Nat Commun ; 9(1): 4071, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287820

RESUMO

The two-dimensional topological insulators host a full gap in the bulk band, induced by spin-orbit coupling (SOC) effect, together with the topologically protected gapless edge states. However, it is usually challenging to suppress the bulk conductance and thus to realize the quantum spin Hall (QSH) effect. In this study, we find a mechanism to effectively suppress the bulk conductance. By using the quasiparticle interference technique with scanning tunneling spectroscopy, we demonstrate that the QSH candidate single-layer 1T'-WTe2 has a semimetal bulk band structure with no full SOC-induced gap. Surprisingly, in this two-dimensional system, we find the electron-electron interactions open a Coulomb gap which is always pinned at the Fermi energy (EF). The opening of the Coulomb gap can efficiently diminish the bulk state at the EF and supports the observation of the quantized conduction of topological edge states.

19.
ACS Nano ; 12(2): 1537-1543, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29294273

RESUMO

We report the study of a triaxial vector magnetoresistance (MR) in nonmagnetic (Bi1-xInx)2Se3 nanodevices at the composition of x = 0.08. We show a dumbbell-shaped in-plane negative MR up to room temperature as well as a large out-of-plane positive MR. MR at three directions is about in a -3%:-1%:225% ratio at 2 K. Through both the thickness and composition-dependent magnetotransport measurements, we show that the in-plane negative MR is due to the topological phase transition enhanced intersurface coupling near the topological critical point. Our devices suggest the great potential for room-temperature spintronic applications in, for example, vector magnetic sensors.

20.
Sci Rep ; 8(1): 1467, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362498

RESUMO

Using ab initio calculations based on density-functional theory and effective model analysis, we propose that the trigonal YH3 (Space Group: P[Formula: see text]c1) at ambient pressure is a node-line semimetal when spin-orbit coupling (SOC) is ignored. This trigonal YH3 has very clean electronic structure near Fermi level and its nodal lines locate very closely to the Fermi energy, which makes it a perfect system for model analysis. Symmetry analysis shows that the nodal ring in this compound is protected by the glide-plane symmetry, where the band inversion of |Y+, d xz 〉 and |H1-, s〉 orbits at Γ point is responsible for the formation of the nodal lines. When SOC is included, the line nodes are prohibited by the glide-plane symmetry, and a small gap (≈5 meV) appears, which leads YH3 to be a strong topological insulator with Z2 indices (1,000). Thus the glide-plane symmetry plays an opposite role in the formation of the nodal lines in cases without and with SOC. As the SOC-induced gap is so small that can be neglected, this P[Formula: see text]c1 YH3 may be a good candidate for experimental explorations on the fundamental physics of topological node-line semimetals. We find the surface states of this P[Formula: see text]c1 phase are somehow unique and may be helpful to identify the real ground state of YH3 in the experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...